18 research outputs found

    Nonlinear Discrete Systems with Nonanalytic Dispersion Relations

    Full text link
    A discrete system of coupled waves (with nonanalytic dispersion relation) is derived in the context of the spectral transform theory for the Ablowitz Ladik spectral problem (discrete version of the Zakharov-Shabat system). This 3-wave evolution problem is a discrete version of the stimulated Raman scattering equations, and it is shown to be solvable for arbitrary boundary value of the two radiation fields and initial value of the medium state. The spectral transform is constructed on the basis of the D-bar approach.Comment: RevTex file, to appear in Journ. Math. Phy

    Small-amplitude excitations in a deformable discrete nonlinear Schroedinger equation

    Full text link
    A detailed analysis of the small-amplitude solutions of a deformed discrete nonlinear Schr\"{o}dinger equation is performed. For generic deformations the system possesses "singular" points which split the infinite chain in a number of independent segments. We show that small-amplitude dark solitons in the vicinity of the singular points are described by the Toda-lattice equation while away from the singular points are described by the Korteweg-de Vries equation. Depending on the value of the deformation parameter and of the background level several kinds of solutions are possible. In particular we delimit the regions in the parameter space in which dark solitons are stable in contrast with regions in which bright pulses on nonzero background are possible. On the boundaries of these regions we find that shock waves and rapidly spreading solutions may exist.Comment: 18 pages (RevTex), 13 figures available upon reques

    Proposal for SPS beam time for the baby MIND and TASD neutrino detector prototypes

    Full text link
    The design, construction and testing of neutrino detector prototypes at CERN are ongoing activities. This document reports on the design of solid state baby MIND and TASD detector prototypes and outlines requirements for a test beam at CERN to test these, tentatively planned on the H8 beamline in the North Area, which is equipped with a large aperture magnet. The current proposal is submitted to be considered in light of the recently approved projects related to neutrino activities with the SPS in the North Area in the medium term 2015-2020

    Studies of HTO washout and deposition in the vicinity of emission source

    No full text
    There are presented in the report research results of HTO wash-out and the model of HTO atmosphere concentration in the vicinity of a long-term HT and HTO emission source. The site of the scavenging experiments was around a 30 m emission source. The sampling arcs were chosen at 150-300 m from the base of the source to minimize dry deposition on the precipitation collectors. To study dependence of scavenging of tritium on raindrops characteristics, an optical device was constructed and used to measure the distribution of the drop radii and velocities during the period of experiment. The wash-out model, used for assessments, takes into account dispersion, deposition and re-emission. Soil surface is considered as secondary area source. Primary source is characterized as a source of infinite duration and permanent strength. Ingress of HTO to soil from primary source is occurred due to both dry and wet deposition. The model of HTO wet deposition is taken into account kinetics of HTO exchange between vapor and liquid phase with parameters such as rain drop spectra, rain intensity, condensation-evaporation on drop's interface Ingress of HT in soil is only due to HT dry deposition. Gauss type formulae for permanent emission source is used to calculate HTO atmosphere concentration. Averaged real meteorological data are used as input parameters for modeling

    On the theory of carrier-induced ferromagnetism in diluted magnetic semiconductors

    No full text
    Two different approaches (presented in the literature as alternative approximations) to the problem of carrier-induced ferromagnetism in the system of disordered magnetic ions of a diluted magnetic semiconductor are analyzed. They are based on a self-consistent procedure for the mean exchange fields and the RKKY interaction. Calculations in the framework of exactly solvable model are carried out, and it shows that these approaches stem from two different contributions to the magnetic susceptibility. One stems from the diagonal part of the carrier-ion exchange interaction and corresponds to mean field approximation. The other one stems from the off-diagonal part of the same interaction and describes the indirect interaction between localized spins via free carriers. These two contributions can be responsible for the different magnetic properties. Thus, the aforementioned contributions are complementary but not alternative to each other. A general approach is proposed and compared with different approximations to the problem under consideration

    Effect of Impregnation on the Structure of Niobium Oxide/Alumina Catalysts Studied by Multinuclear Solid-State NMR, FTIR, and Quantum Chemical Calculations

    No full text
    Multinuclear solid-state <sup>1</sup>H, <sup>27</sup>Al, and <sup>93</sup>Nb NMR experiments and DFT calculations were carried out for structural characterization of alumina-supported niobium oxide catalysts with high niobium content following an every stage in the catalyst preparation. It was found that the first stage of the impregnation procedure plays a key role in determining the catalyst structure and acidity. In order to monitor the presence in catalysts of aluminum niobate phase, AlNbO<sub>4</sub>, a series of <sup>27</sup>Al and <sup>93</sup>Nb NMR experiments was performed for several different individual AlNbO<sub>4</sub> samples. Aluminum and niobium NMR parameters were determined for AlNbO<sub>4</sub>, which crystal structure contains two different crystallographic sites for each element. The compound was investigated through a combination of experimental <sup>93</sup>Nb and <sup>27</sup>Al NMR spectroscopy methods at several magnetic field strengths (9.4, 11.7, 19.4, and 21.1 T) and complemented by ab initio quantum chemical calculations of NMR parameters for these nuclei. The chemical shielding and the quadrupole coupling tensor parameters were determined for both <sup>93</sup>Nb and <sup>27</sup>Al
    corecore